- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
22
- Author / Contributor
- Filter by Author / Creator
-
-
Zhou, Xinyi (4)
-
Bragg, Jonathan (1)
-
Chang, Joseph Chee (1)
-
Chao, Paul (1)
-
Chen, Duowen (1)
-
Hunter, Allen H. (1)
-
Li, Zhiqi (1)
-
Lien, Huai-Hsun (1)
-
Lin, Candong (1)
-
Liu, Huan (1)
-
Misra, Amit (1)
-
Phoha, Vir V. (1)
-
Qiu, Lin (1)
-
Shahani, Ashwin J. (1)
-
Shu, Kai (1)
-
Sloan, Luke (1)
-
Wang, Ruotong (1)
-
Xiong, Shiying (1)
-
Zafarani, Reza (1)
-
Zhang, Amy X (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We propose a novel gauge fluid solver that evolves Clebsch wave functions on particle flow maps (PFMs). The key insight underlying our work is that particle flow maps exhibit superior performance in transporting point elements—such as Clebsch components—compared to line and surface elements, which were the focus of previous methods relying on impulse and vortex gauge variables for flow maps. Our Clebsch PFM method incorporates three main contributions: a novel gauge transformation enabling accurate transport of wave functions on particle flow maps, an enhanced velocity reconstruction method for coarse grids, and a PFM-based simulation framework designed to better preserve fine-scale flow structures. We validate the Clebsch PFM method through a wide range of benchmark tests and simulation examples, ranging from leapfrogging vortex rings and vortex reconnections to Kelvin-Helmholtz instabilities, demonstrating that our method outperforms its impulse- or vortex-based counterparts on particle flow maps, particularly in preserving and evolving small-scale features.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Wang, Ruotong; Zhou, Xinyi; Qiu, Lin; Chang, Joseph Chee; Bragg, Jonathan; Zhang, Amy X (, ACM)Free, publicly-accessible full text available April 25, 2026
-
Zhou, Xinyi; Chao, Paul; Sloan, Luke; Lien, Huai-Hsun; Hunter, Allen H.; Misra, Amit; Shahani, Ashwin J. (, Scripta Materialia)
-
Zhou, Xinyi; Shu, Kai; Phoha, Vir V.; Liu, Huan; Zafarani, Reza (, WWW '22: Proceedings of the ACM Web Conference 2022)
An official website of the United States government
